1
use crate::{Denominator, Numerator, Q};
2
use core::ops::Mul;
3
use typenum::{Gcd, Gcf, PartialDiv, Prod};
4

            
5
pub trait PrivateMulHelper<Rhs> {
6
    type Output;
7
}
8

            
9
impl<Nl, Dl, Nr, Dr, No, Do> PrivateMulHelper<Q<Nr, Dr>> for Q<Nl, Dl>
10
where
11
    Nl: Numerator<Dl> + Mul<Nr>,
12
    Dl: Denominator + Mul<Dr>,
13
    Nr: Numerator<Dr>,
14
    Dr: Denominator,
15
    No: Numerator<Do>,
16
    Do: Denominator,
17
    Prod<Nl, Nr>: Gcd<Prod<Dl, Dr>> + PartialDiv<Gcf<Prod<Nl, Nr>, Prod<Dl, Dr>>, Output = No>,
18
    Prod<Dl, Dr>: PartialDiv<Gcf<Prod<Nl, Nr>, Prod<Dl, Dr>>, Output = Do>,
19
{
20
    type Output = Q<No, Do>;
21
}
22

            
23
impl<Nl, Dl, Nr, Dr, No, Do> Mul<Q<Nr, Dr>> for Q<Nl, Dl>
24
where
25
    Self: PrivateMulHelper<Q<Nr, Dr>, Output = Q<No, Do>>,
26
    Nl: Numerator<Dl>,
27
    Dl: Denominator,
28
    Nr: Numerator<Dr>,
29
    Dr: Denominator,
30
    No: Numerator<Do>,
31
    Do: Denominator,
32
{
33
    type Output = Q<No, Do>;
34

            
35
7
    fn mul(self, rhs: Q<Nr, Dr>) -> Self::Output {
36
7
        let _ = rhs;
37
7
        Self::Output::new()
38
7
    }
39
}
40

            
41
#[cfg(test)]
42
mod tests {
43
    use super::*;
44
    use typenum::consts::*;
45

            
46
    #[test]
47
1
    fn test_mul() {
48
1
        // zero * zero
49
1
        assert!(Q::<Z0>::new() * Q::<Z0>::new() == Q::<Z0>::new());
50

            
51
        // zero * negative
52
1
        assert!(Q::<Z0>::new() * Q::<N3, P2>::new() == Q::<Z0>::new());
53

            
54
        // positive * positive
55
1
        assert!(Q::<P2, P3>::new() * Q::<P3, P2>::new() == Q::<P1>::new());
56

            
57
        // positive * negative
58
1
        assert!(Q::<P2, P3>::new() * Q::<N3, P2>::new() == Q::<N1>::new());
59

            
60
        // negative * zero
61
1
        assert!(Q::<N2, P3>::new() * Q::<Z0>::new() == Q::<Z0>::new());
62

            
63
        // negative * positive
64
1
        assert!(Q::<N2, P3>::new() * Q::<P3, P2>::new() == Q::<N1>::new());
65

            
66
        // negative * negative
67
1
        assert!(Q::<N2, P3>::new() * Q::<N3, P2>::new() == Q::<P1>::new());
68
1
    }
69
}