1
//! **Development in progress**
2
//!
3
//! Type-level rational numbers based on [typenum].
4
//!
5
//! [typenum]: https://crates.io/crates/typenum
6

            
7
#![no_std]
8
#![cfg_attr(test, recursion_limit = "256")]
9

            
10
use core::marker::PhantomData;
11
use typenum::Gcd;
12

            
13
#[doc(no_inline)]
14
pub use typenum::consts::*;
15

            
16
#[doc(no_inline)]
17
pub use typenum::{Equal, Greater, Less, NInt, PInt};
18

            
19
mod uint;
20
pub use uint::NonZeroUnsigned;
21

            
22
mod int;
23
pub use int::Integer;
24

            
25
mod marker;
26
pub use marker::{NonNegative, NonZero, NotOne};
27

            
28
/// Type-level integers usable as denominators of type-level rational numbers.
29
///
30
/// # Examples
31
///
32
/// ```
33
/// use typerat::*;
34
///
35
/// fn is_denominator<D: Denominator>() -> bool {
36
///     true
37
/// }
38
///
39
/// assert!(is_denominator::<P1>());
40
/// assert!(is_denominator::<P2>());
41
/// ```
42
///
43
/// ```compile_fail
44
/// # use typerat::*;
45
/// #
46
/// # fn is_denominator<D: Denominator>() -> bool {
47
/// #     true
48
/// # }
49
/// #
50
/// assert!(is_denominator::<Z0>());
51
/// ```
52
///
53
/// ```compile_fail
54
/// # use typerat::*;
55
/// #
56
/// # fn is_denominator<D: Denominator>() -> bool {
57
/// #     true
58
/// # }
59
/// #
60
/// assert!(is_denominator::<N1>());
61
/// ```
62
pub trait Denominator: Integer + NonNegative + NonZero {}
63

            
64
impl<D> Denominator for D where D: Integer + NonNegative + NonZero {}
65

            
66
/// Type-level integers usable as numerators of type-level rational numbers with denominator `D`.
67
///
68
/// # Examples
69
///
70
/// ```
71
/// use typerat::*;
72
///
73
/// fn is_numerator_for_denominator_2<N: Numerator<P2>>() -> bool {
74
///     true
75
/// }
76
///
77
/// assert!(is_numerator_for_denominator_2::<P1>());
78
/// assert!(is_numerator_for_denominator_2::<N1>());
79
/// assert!(is_numerator_for_denominator_2::<P3>());
80
/// assert!(is_numerator_for_denominator_2::<N3>());
81
/// ```
82
///
83
/// ```compile_fail
84
/// # use typerat::*;
85
/// #
86
/// # fn is_numerator_for_denominator_2<N: Numerator<P2>>() -> bool {
87
/// #     true
88
/// # }
89
/// #
90
/// assert!(is_numerator_for_denominator_2::<P2>());
91
/// ```
92
///
93
/// ```compile_fail
94
/// # use typerat::*;
95
/// #
96
/// # fn is_numerator_for_denominator_2<N: Numerator<P2>>() -> bool {
97
/// #     true
98
/// # }
99
/// #
100
/// assert!(is_numerator_for_denominator_2::<N2>());
101
/// ```
102
///
103
/// ```compile_fail
104
/// # use typerat::*;
105
/// #
106
/// # fn is_numerator_for_denominator_2<N: Numerator<P2>>() -> bool {
107
/// #     true
108
/// # }
109
/// #
110
/// assert!(is_numerator_for_denominator_2::<P4>());
111
/// ```
112
pub trait Numerator<D = P1>: Integer + Gcd<D, Output = P1> {}
113

            
114
impl<N, D> Numerator<D> for N
115
where
116
    N: Integer + Gcd<D, Output = P1>,
117
    D: Denominator,
118
{
119
}
120

            
121
/// `Q<N, D>` represents a type-level rational number with numerator `N` and denominator `D`.
122
#[derive(Debug)]
123
pub struct Q<N, D = P1>(PhantomData<(N, D)>)
124
where
125
    N: Numerator<D>,
126
    D: Denominator;
127

            
128
impl<N, D> Q<N, D>
129
where
130
    N: Numerator<D>,
131
    D: Denominator,
132
{
133
    const SELF: Self = Q(PhantomData);
134

            
135
    /// Constructs a new instance of this type-level rational number.
136
207
    pub const fn new() -> Self {
137
207
        Self::SELF
138
207
    }
139

            
140
    /// Borrows an instance of this type-level rational number.
141
1
    pub const fn borrow<'a>() -> &'a Self {
142
1
        &Self::SELF
143
1
    }
144
}
145

            
146
impl<N, D> Clone for Q<N, D>
147
where
148
    N: Numerator<D>,
149
    D: Denominator,
150
{
151
1
    fn clone(&self) -> Self {
152
1
        *self
153
1
    }
154
}
155

            
156
impl<N, D> Copy for Q<N, D>
157
where
158
    N: Numerator<D>,
159
    D: Denominator,
160
{
161
}
162

            
163
impl<N, D> Default for Q<N, D>
164
where
165
    N: Numerator<D>,
166
    D: Denominator,
167
{
168
2
    fn default() -> Self {
169
2
        Self::new()
170
2
    }
171
}
172

            
173
mod rational;
174
pub use rational::Rational;
175

            
176
mod ops;
177
pub use ops::Recip;
178

            
179
mod cmp;
180
pub use cmp::{Cmp, Ordering};
181

            
182
mod fmt;
183

            
184
#[cfg(test)]
185
mod tests {
186
    use super::*;
187
    use char_buf::CharBuf;
188
    use core::fmt::Write;
189

            
190
    macro_rules! format {
191
        ($($arg:tt)*) => {
192
            {
193
                let mut w = CharBuf::<1024>::new();
194
                write!(w, $($arg)*).unwrap();
195
                w
196
            }
197
        };
198
    }
199

            
200
    #[test]
201
1
    fn test_q() {
202
1
        let a = Q::<P1, P2>::default();
203
1
        let b = a.clone();
204
1
        let c: PhantomData<(P1, P2)> = PhantomData;
205
1
        let d = Q::<P1, P2>::borrow();
206
1

            
207
1
        assert_eq!(a, b);
208
1
        assert_eq!(&a, d);
209
1
        assert_eq!(format!("{:?}", a), format!("Q({:?})", c));
210
1
    }
211
}